SM3 7.2 Log Evaluations & Properties

Exponential expressions are of the form a^x and have the value of multiplying $a \cdot a \cdot a \cdot a \cdot a \cdot a \cdots a$ until a total of x copies of a have been multiplied together. If x is negative, we divide by x copies of a instead.

Example: Evaluate 24

2 · 2 · 2 · 2

16

Example: Evaluate 3^{-4}

$$\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$$

 $\frac{1}{81}$

Logarithmic expressions are of the form $\log_b a$ where b represents the logarithmic base and a represents the argument of the logarithm. The expression has a value that answers the question "how many bs need to be multiplied to produce a?"

Example: Evaluate log₃ 81

81 is a power of 3

Since $3 \cdot 3 \cdot 3 \cdot 3 = 81$, we need to multiply by 4 copies of 2 to get 81.

 $\log_3 81 = 4$

Example: Evaluate $\log_2 \frac{1}{16}$

16 is a power of 2 but since it's in the bottom, we'll need negative power.

Since $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{16}$, we need to divide by 4 copies of 2 to get $\frac{1}{16}$.

$$\log_2 \frac{1}{16} = -4$$

Logarithmic and exponential operations are inverses: they undo one another. If you have to evaluate a base raised to a like-based log, the two operations cancel. Likewise, when evaluating the log of an exponential that shares the same base, the two operations cancel.

Example: Evaluate $\log_3 3^7$

 $\log_3 x$ and 3^x are inverse operations and eliminate one another.

 $\log_3 3^7 = 7$

Example: Evaluate $6^{\log_6 11}$

 6^x and $\log_6 x$ are inverse operations and eliminate one another.

 $6^{\log_6 11} = 11$

Since logarithms and exponentials are related then we can switch between their forms. We know that $3^2 = 9$ and $\log_3 9 = 2$ (because 2 copies of 3's are needed to make 9), this leads us to see that we can switch between exponential form and logarithmic if needed.

Exponential Form $b^c = a$ Logarithmic Form $\log_h a = c$

Evaluate the following expressions

 1.3^{5}

 2.4^{-2}

 $3. 10^3$

 $4. -2^{-2}$

 $5.\log_3 27$

6. log₄ 4

7. log₈ 1

8. $\log_3 \frac{1}{81}$

9. log₅ 125

10. log₁₂ 144

11. log 1000

12. log 0.001

13. 2^{log₂ 12}

14. $\log_{11} 11^{-3}$ 15. $\log_4 16^x$

16. $\log_2 \frac{1}{32}$

17. $6^{\log_6(2x+1)}$

18. $\log_6 \frac{1}{216}$

19. $\log_8 8^7$

20. log₁₆ 4

21. e^0

22. ln1

23. e^{lnx}

24. $ln(e)^2$

Rewrite each exponential in logarithmic form.

25.
$$81^{1/2} = 9$$

$$26.\ 19^2 = 361$$

25.
$$81^{1/2} = 9$$
 26. $19^2 = 361$ 27. $\frac{1}{32} = 2^{-5}$ 28. $r^8 = 117$

28.
$$r^8 = 117$$

Rewrite each logarithm in exponential form. 29. $\log_{12}\frac{1}{144}=-2$ 30. $\log_{15}225=2$ 31. $\log_{11}y=x$ 32. $\log_61=$

$$29. \log_{12} \frac{1}{144} = -2$$

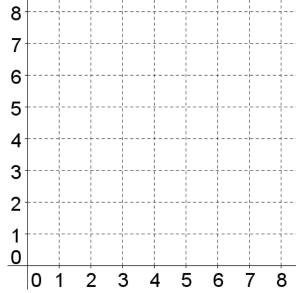
$$30. \log_{15} 225 = 2$$

31.
$$\log_{11} y = x$$

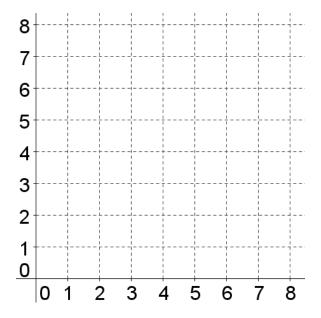
32.
$$\log_6 1 =$$

Complete the tables of values of a function:

complete the tables of values of a fair				
$33) f(x) = \log_3 x$				
x	f(x)			
1				
1 9				
$\frac{1}{3}$				
3				
1				
3				
9				


$34) g(x) = \log_2 x$		
x	g(x)	
1		
16		
$\frac{1}{8}$		
1024		
$\frac{1}{32}$		

$35) p(x) = \log_5 x$			
x	p(x)		
	2		
	0		
	-3		
	4		
	$\frac{1}{2}$		


$36) q(x) = \log x$		
x	q(x)	
	4	
	-1	
	0	
	6	
	-3	

37) Complete the tables then graph both functions on the same coordinate axis by plotting points and connecting with a curve.

$v(x) = 2^x$		$w(x) = \log_2 x$	
x	v(x)	х	w(x)
1			1
2			2
3			3

$v(x) = e^x$		$w(x) = \ln x$	
x	v(x)	x	w(x)
1			1
2			2
3			3

